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Physical Review B, in press

LINE SHAPE OF AN ATOM-CRYSTAL BOND

Henk F. Arnoldus and Thomas F. George

Department of Physics
239 Fronczak Hall

State University of New York at Buffalo

Buffalo, New York 14260

ABSTRACT

The spectral profile for the absorption of infrared laser light by a

vibrational bond between a physisorbed atom and a harmonic crystal is calculated.

We obtained an analytical expression for the line shape, which includes the finite

memory-time effects in the interaction between atomic motion and bulk-atom

vibrations. Both the memory in the time regression of the dipole correlation

function and the initial correlations are taken into account. It is shown that

absorption from a laser with a frequency which is larger than the cutoff frequency

WD of the dispersion relation of the crystal can only occur due to a memory in the

relaxation process, provided that multiphonon transitions are negligible. We

predict a resonance-like line at w + wD (with w0 the unperturbed resonance) for

atom-surface bonds with a permanent dipole moment.

''C..;For

cr, r,; <3t"

PACS: 63.20.-e, 78.65.-s b - ..

~I; i +, . ,.''-i ,[71I '



I. INTRODUCTION

If a crystal is exposed to an atomic vapor, then many atoms will stick to its

surface due to the van der tWaals interaction. Every atom in the vicinity of the

solid experiences an attractive potential, which supports continuum (desorbing)

states and bound (adsorbing) states. Transitions from bound to continuum states

can be induced by thermal coupling of the vibrational bond with the phonon

reservoir of the crystal, or by illumination with a strong infrared laser. With

the first mechanism a large desorption rate can be achieved by a sufficient

heating of the substrate, whereas in the second process the transition to the

continuum is brought about by photon absorption. For these processes the

o interaction between adsorbate and crystal can be accounted for by relaxation terms

in a master equation for the populations of the vibrational levels, where the rate

constants are given by the Golden Rule. Dynamical properties of the system are

determined by the relative values of these rate constants and by the level

structure of the potential. Then the desorption rate as a function of time

4. contains information on the atom-crystal interaction, e.g. the rate constants.

Several authors 13applied this technique to evaluate the photodesorption yield as

a function of the laser frequency. A far more sensitive method to obtain insight

8% into the details of the dynamical features of adsorbates is by measuring the

* steady-state low-intensity absorption profile 1(w) as a function of the probe

(laser) frequency w. 46Then the absorption spectrum will reveal the details of

dynamical atom-lattice bonds, 7surface-modified internal molecular modes, 8or

properties of the interaction between two adspecies. 9We shall consider a single

% Ij atom which is adsorbed on a harmonic-lattice crystal, and bounded to the surface

by a potential V(z). We neglect lateral motion and indicate the normal to the

Heisenberg picture, of the atom-crystal bond must be in the z-direction, and hence



we can write p(t) - p(t)ez with p(t) a scalar operator. An infrared laser with

intensity IL (energy per unit of time which passes a unit surface area,e.

perpendicular to the direction of propagation) and polarization cL is incident on

the atomic bond. Since the wavelength of the radiation is much larger than the

atom-surface separation, we can adopt the dipole approximation for the interaction

between the bond and the external field. Then a general expression for the

absorbed energy per unit of time, the absorption 
profile, reads

1 0

I(M) - ILez. 2LI 2 Re lim dr e Trp(t)[p(t+r),A(t)] (1.1)
_ R t-*w o

where p(t) is the density operator for the atom, the entire crystal, and the

interaction. The appearance of the commutator reflects that the net absorption is

a balance between stimulated absorption (the term p(t+r)ji(t)) and stimulated

emission (the term 4(t)M(t+r)) of photons from and into the laser field.

'* Transformation of Eq. (1.1) to the Schrodinger picture yields the equivalent

expression

1(w)- I e!. L12 Re lim dr Truei(w-L)r[A,p(t)] (1.2)

oycR t-.W 0O

Here, the limit t-- only pertains to the density operator p(t), and obviously

p(t-) represents the thermal-equilibrium state of the system. If we write a for

an arbitrary density operator, as we shall do throughout the paper, then the

Liouvillian L in the exponential in Eq. (1.2) is related to the Hamiltonian H by

La - [H,a .
(1.3)

* ~ ~ ~ ~ ~ ~ ~ .'i 2Z*-%9 ~V%*. ~..~~~~%pN



From Eq. (1.2) we notice that the frequency dependence of I(w) is governed by the

Fourier-Laplace parameter w in the transformation of exp(-iLr), and consequently

the resonance lines in the profile are situated at the eigenvalues of L. Then we

recall that the equation of motion for the density operator is

i do -Lp (1.4)dt

and therefore the dynamical properties of the system will be displayed in the W-

dependence of I(w), even though the system is in a stationary state (for which

p(t) becomes independent of time). It is not the direct time evolution of p(t)

which is probed by the laser, but the time-regression operator exp(-iLT) of the

dipole correlation functions, as they appear in Eq. (1.1). The significance of a

measurement of I(w) then relies on the fact that L represents the entire system,

rather than only the vibrational bond.

II. HAMILTONIAN

A harmonic crystal can be represented by the Hamiltonian Hp for its phonon

field11

Hp - (k)aks (2.1)

ks--

in terms of the annihilation (ak) and creation (ats) operators for phonons in the

mode ks. Here, k and s denote the wave vectors and polarizations, respectively,

and w s(k) is the dispersion relation. The Hamiltonian for the bounded atom

includes a kinetic energy and a potential

..



5

H d + V(z) (2.2)
a 2m -VZ)2

with m the mass of the atom. Eigenstates and eigenvalues of H can be found' a

easily for a variety of potentials V(z). An important example is the Morse

potential, which models the atom-crystal binding quite accurately. Kinetic

coupling between the atomic motion and the phonon field is assumed to be dominated

by single-phonon interactions, for which the Hamiltonian reads

H - -(uez) dz (2.3)
ap -z dz

The operator u is the displacement of the crystal atom which is closest to the

adsorbate. Explicitly

'v ) a, ') (2.4)

-L 2MVco (k) ~ ( k.ks
ks

with V and v the volumes of the crystal and a unit cell, respectively, M the mass

of a crystal atom, and eks the unit polarization vector of a phonon in the mode

ks. The total Hamiltonian then becomes

HH + +H ,(2.5)

H - Hp + Ha ap 
(

which determines the Liouvillian L according to Eq. (1.3). Then the density

operator p(t) of the system follows after solution of Eq. (1.4), and the spectral

profile is obtained in evaluating expression (1.2).

4
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III. RESERVOIR CORRELATION FJNCTION

Due to the many degrees of freedom of the phonon field a direct

diagonalization of the Hamiltonian is intractable, so that we have to resort to an

approximation. The thermal-equilibrium density operator of the crystal at

temperature T is

-1
p - {Trp exp(-H p/kBT)) exp(-H p/kBT )  , (3.1)

with kB Boltzmann's constant, and where Tr indicates a trace over the states of

the phonon field only. Then the idea is that the large crystal can be regarded as

a thermal reservoir, and that its state p is not affected by the presence of the
p 1

* single atom on the surface. The central quantity in standard relaxation theory
1 2

is the reservoir correlation function

-2 iLT

f(T) - K2 Tr p(Uez)e P (p puez) (3.2)

with L pa - [H ,a]/. Relaxation constants are then expressed in the Fourier-

Laplace transform of f(r)

) J dr e irf(r) (3.3)

We shall adopt a Debye model for the dispersion relation, which implies

I s (k) - c'k H(wDc'k) (3.4)



in terms of the Debye frequency WD, the speed of sound c', and the unit-step

function H. Furthermore, we recall the relation

v 67_12

83 
3 

(

expressing that the cutoff frequency wD appears as a consequence of the finiteness

of the volume v of a unit cell. Then it is an easy matter to compute f(w), and we

obtain 
1 3

? () - g(W/W D) (3.6)

where the overall factor is given by

3w (3.7)

The dimensionless function g(w/wD) which represents the w-dependence of ?(w) is

found to be

g(z) - zH(z)H(l-z) - (l+zlogjl-1I) + -zj H(1-Izj)

+ .1d f ldx X (3.8)
7F 0 e - x - 1 z2

which depends parametrically on the temperature through

7- . D kBT(3.9)7kBT



It will appear that the function g(z) incorporates the refinements of an

absorption line in comparison with the standard Lorentzian. A plot of g(z) can be

found in Ref. 13.

Two important properties of g(z), which can be deduced from Eq. (3.8), are

Re g(z) - 0 for Izi > 1 , (3.10)

g(-z) - g(z)* for T - . (3.11)

Furthermore, g(z) goes to zero very fast for jzi > 1. This implies, in view of
~14

Eq. (3.3), that f(t) has a time width of the order of I/ D . In a previous paper

we pointed out that this feature prohibits the application of the Markov

, approximation in the derivation of an equation for the reduced adsorbate density

operator pa(t), defined by

Pa(t) - Trp(t) (3.12)

If only a master equation for the populations of the vibrational states is of

interest (as for instance in the desorption problem), then the finite time width

of f(r) does not have much significance, but for the evaluation of an absorption

profile it is of paramount importance that the details of ?(w) are taken into

consideration, as we shall show below.

IV. DENSITY OPERATOR

Finite memory-time reservoir theory is a complicated mathematical tool, which

can be applied to solve Eq. (1.4) for pa (t) and to evaluate steady-state quantum

correlation functions, as they appear in Eq. (1.1). Recently we developed the
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general theory, 15 and in this paper we apply the formalism to the computation of

line shapes of adsorbates.

If we would be able to prepare the adsorbate at time zero in state p a(0),

then its state for t >_ 0 is given by

Pi Pa(0 )  
(4.1)

a

in the Fourier-Laplace domain. As usual, L a denotes the commutator with H a,

divided by ). Coupling to the reservoir is embodied in the relaxation operator

r(.), defined by

(w)oa - Tr L L ( ) , (4.2)a papw ap ap
a p

where aa is an arbitrary adsorbate density operator, and L ap - [H ap,]/)K. The

operator inversion on the right-hand side of Eq. (4.2) might seem awkward, but in

Ref. 15 we have shown how to evaluate explicitly the matrix elements of r().

For the steady-state line profile we only need the long-time solution of

P a(t), which can be found from its Fourier-Laplace transform according to

Pa - lim p a(t) - tim -icpa (W)  (4.3)t-Oa a

With Eq. (4.1) we then see that pa is the solution of

(L a - ir(o))p a - 0 , (4.4)

and of course the restictions a - Pa' Tr a " I should be imposed.
a ~a aa



In the Markov or zero memory-time approximation, the relaxation operator r(w)

acquires a frequency-independent value. It is the w-dependence of P(w) which

reflects the memory in the atom-crystal interaction. In the long-time limit the

density operator is determined by r(w) at w - 0, but this operator is not equal to

its Markovian equivalent, as shown elsewhere.
1 4

V. ABSORPTION PROFILE

From Eq. (1.1) we notice that the absorption profile involves quantities as

Trp(t)p(t+r)M(t), which depend on two times, and their evaluation is

correspondingly more complicated. In this section we derive a formal expression

0
for I(w).

First we introduce a two-time operator

D(rt) - e -iLr (Ap(t)] (5.1)

and its Fourier-Laplace transform

% D(w,t) - dr e D(r,t) (5.2)

where the frequency dependence only refers to the first argument of D(r,t). We

remark that D(r,t) is an operator in the entire atom plus crystal Hilbert space.

Comparison of Eqs. (5.1) and (5.2) with Eq. (1.2) shows that the expression for

I(W) can be cast in the form

I(w) - IfIez.EL 12  Y Re lim TrpD(w,t) (5.3)

0 -

WI

% %%



From the fact that the dipole operator M acts only on adsorbate states, it follows

chat

Trpb(w,t) - Tr aa(w,t) (5.4)

with Da(wt) - TrpD(w,t), the reduced adsorbate operator.

Then we notice that D(r,t) obeys

i D(r,t) - L D(r,t) , > > 0 (5.5)

as is evident from its definition (5.1). Hence the r-dependence of D(r,t) is

governed by the same equation as the one which determines the time evolution of

the density operator p(t), Eq. (1.4). An important difference is that the initial

value for Eq. (5.5) reads

D(O,t) - [,,p(t)] , (5.6)

in contrast to the equation for p(t), where p(0) can be chosen arbitrarily. The

time regression of D(r,t) on the interval 0 < r < - is identical to the time

evolution of p(t) on 0 < t < -, and therefore it should be possible to express

D(w,t) in r(o). Additionally, the initial value D(0,t) depends explicitly on t,

via p(t), and in a finite memory-time theory this quantity will carry a memory to

the time evolution of p(t) in the recent past (times smaller than t).

Contributions to the line profile which arise due to this mechanism will be

referred to as initial correlations. It might seem that in the limit t - w we can

replace p(t) by pap, which would eliminate initial correlations. We shall show

that this is not correct in general. In Ref. 15 we have developed a general

%



method for the evaluation of quantities of the form a (w,t-.=). If we apply that

theory to the present situation, we find the formal expression for the absorption

profile

I(w) - I lz.!Lle c 0 c ReTraLX w-Lair(w) (Ly.iT(w))Pa (5.7)

where the Liouvillians LX and Ly

Lx aa - paa  (5.8)
Ly a  - [p,a a  , 

(5.9)

4are introduced in order to simplify the notation. Equation (5.7) is the most

condensed and general expression for the absorption profile of an atomic bond on

crystal. We recognize the time regression operator i/(w-L +ir(w)), which is the

same indeed as in Eq. (4.1). Initial correlations are accounted for by the

frequency-dependent operator T(w), which is explicitly

T (w )aa - Tr ptap -L -L Ly t+ L ap (aap (5 .10 )
•a 

p i 0 + L -L a P a

Furthermore, we notice that the series of Liouvillians under the trace in Eq.

(5.7) act on the stead-state density operator pa of the adsorbate, which can be

obtained by solving Eq. (4.4).

I%
%J-



VI. MATRIX ELEMENTS OF r(w) AND T(w)

Eigenvalues and eigenstates of the atomic-bond Hamiltonian Ha from Eq. (2.2)

are defined by

HalP> - XW p lp> , (6.1)

and due to the neglect of lateral motion the eigenvalues MWp are non-degenerate.

For realistic adsorbate systems there are approximately 25 bound states Ip>. In

this section we expand the various Liouvillians onto the set tip>) of adsorbate

bound states.

Without coupling to the reservoir (F(w) - 0, T(w) - 0) the time regression

operator is determined by the inverse of w-La, and with Eq. (6.1) we readily find

<pi((w-La) allq> - (-Apq ) <pjijq> , (6.2)

in terms of the level separations

A p- - Wq * (6.3)

Equation (6.2) relates the matrix elements of (w-La )a to the matrix elements of a

for any adsorbate density operator a, and thus Eq. (6.2) implies the matrix

representation of the Liouvillian w-L .a

The coupling between the crystal-atom motion and the adsorbate motion is

established by the Hamiltonian H of Eq. (2.3), which has the adbond partap

S - dV (6.4)dz

I%



Matrix elements of this Hermitian operator will be denoted by

S - <plSlq> - S* (6.5)pq qp

Similarly we denote the matrix elements of p by p - <pjI q> - . In case of a
pq qp

Morse potential explicit expressions for S and ;pq can be derived, with an

integral due to Rosen.16  Furthermore, we remark that for any potential V(z) the

diagonal matrix elements of its derivative vanish with respect to the eigenstates

of Ha, e.g.,17

s = 0 (6.6)

The permanent dipole moments p of level lp>, however, are finite in general.

With the methods of Ref. 15 we can evaluate the matrix elements of r(W), as

defined in Eq. (4.2), with respect to the basis set (Ip>). The results is

<pI(r(w)a)lq> - ( W(Aq.)S S b<b laq> + ?*(A p-)S* S* <plalb>
L qa pa a paw qa ab

ab

(?(p+)SpaSbq + ?*(Aaq-w)S*bSap )<ala'b>) , (6.7)

in terms of the matrix elements of S and the reservoir correlation function ?(W)

from Section III. It appears that the frequency dependence of F(w) enters as a

shift of the level separations Apq in the arguments of the correlation function.

The initial correlation operator T(w) from Eq. (5.10) involves the inversionIof two Liouvillians. After laborous computations we obtain

., .
- - . . % % % %



AW((?(A )((qc)-?(Aqb+w))SpbS ca<alolq>
<pIT(w)Iq> - LAqc qccba

abc

'(?*(Acq) - ?*(bq'))SpbSaq<Ciaia>

+ (?(Abp)-?(Acp+w))ScqSpa <alailb>

- (?*(Apb)f*(A Pc'))ScqSab<P
l la>)

A {(f(A ) ?( a + ))Sa Sb<b!laa>

acAp W ac a p aq cbabc c

- (?*(Aca) ?*(Apa-w ))SaqSba<CIb>)

- - {?(Aa) - ?(A q+W))S S <clalb>
A+W ba qa paac

abc

- (?*(Aab) _?* (Aaq( ))SpaScb<alalc>) (6.8)

' Again, the frequency depenence enters as a shift of the arguments in ?(Aab), but

M in addition overall factors (Aab+-) appear. Furthermore, we see that T(w)

depends on the matrix elements of the dipole operator.

i . VII. TWO STATES

With the matrix representations of the various Liouvillians it is

straightforward to evaluate l(w) from Eq. (5.7) for any configuration of levels,

or, for any potential V(z). The profile I(w) will exhibit many overlapping lines

at the adsorbate resonances Ab. In order to disentangle the contributions to

@.b



I(w) from the different transitions, and to elucidate the significance of initial

correlations, we elaborate on the situation where the potential supports only two

bound states. Let us denote these states by 12>, Ii>, with the convention that

W 0 W2 -W > 0. From Eq. (6.5) it follows that S1 1 - S2 2 - 0, and therefore the

only non-vanishing matrix element of dV/dz is

S - < 1 1S 12> , (7.1)

which will be assumed to be real (as for a Morse potential).

From Eqs. (6.2) and (6.7) we find the matrix representation of W-L +iF(W).
a

On the basis 12><21, Il><ll, 12>Xl1, Il><21 this becomes

- L + ir(m) -La

W+ip(w) -iq(w) 0 0

-ip(w) w+iq(w) 0 0

0 G W-o +i?7(w) -in (w) (7.2)

0 0 -i(w) U+ O+i 7 (w)

in terms of the parameter functions

p(W) - S0
2 (?(W0+W) + ?*(W -(W)) , (7.3)

q(w) - So2(?(-wo+W) + ?*(-o'-)) , (7.4)

S(w) - so2((W) + ?*(-w)) (7.5)

.. ' . 4
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Inversion of the matrix (7.2) then yields the resolvent for a (w), Eq. (4.1), and

a Fourier-Laplace inverse of the result gives pa(t). Recalling the complicated

frequency dependence of ?(w), Section III, shows that an evaluation of Pa(t) in

the transient regime 0 < t < - is evidently impossible, unless numerical methods

are applied.

Fortunately, the absorption profile depends only on the steady-state density

operator pa(t - -), which obeys Eq. (4.4). With the matrix representation (7.2)

this equation is easily solved, with result

_a - 12>n 2<21 + ll>n1lI 1 (7.6)

The steady-state level populations are

n ON) n 1)(0). (7.7)
2 - p(O) + q(O) 1 n p(O) + q(O)

and Eq. (7.6) expresses that the coherence <lip a12> vanishes, as usual in thermal

equilibrium. From the definitions of p(O) and q(O) in Eqs. (7.3) and (7.4) we see

that the factor S drops out, and hence the populations are completely determined
0

by the reservoir correlation function 7(w), at the resonance w - wo" With Eq.

(3.6) we then find that the dependence on also disappears, so that n2 and n 1 are

determined by g(z), which has only the temperature as parameter. Explicitly,

Re g(-wo/W D )  (7.8)
2 Re(g(wo/WD ) + g(-o7/WD))

Re g(wo /W)
0 D (7.9)

I Re(g(wo/wD) + g(-wo/wD))

o .o,.o . o , oooooof o.. ooa .oo



which contain only the real parts of the correlation functions. Then it follows

from Eq. (3.10) that for wo>wD the level populations are undetermined. This is a

consequence of the fact that we restricted the atom-crystal interaction to single-

phonon couplings.

VIII. INITIAL CORRELATION OPERATOR

For a two-state system the initial correlation operator T(w) is a 4 x 4

matrix, but its general representation, as it follows from Eq. (6.8), is still

cumbersome. For the evaluation of the spectrum I(w), however, we only need to

know the result of its action on p a, as can be seen from Eq. (5.7). Since pa has

only two non-vanishing matrix elements, rather than four, this simplifies the

situation. On the same basis as the representation (7.2), we then find

x x(w)

T(w)pa - y(w) (8.1)

L-y(w)

*d4)W)

with

S
2

x(w) - o (A1 1 A29

x (n (W W+) ?*(W ) + ?*(W -W))

+ nl(?() - W )  ?*('wo) + ?*(-w -W))) (8.2)
000 0

R 
%' 4 %e ., 4

0P A "eA -



2S 2

Y( M -2 2 21

0

x (n2 ((?(wo) - (w))( o+- ) + (f*(w) *-c')(W-Wo)

+ nl((?('o) - (w))(o-w) + (?*(-W) - ?*(-Co))G0(W+))) (8.3)

The right-most factor in Eq. (5.7) is (Ly-iT(o))Pa, and therefore the

4. relative significance of the initial correlations follows from a comparison of

T(w)pa with LyPa . With Eq. (5.9) we find

%0

YPYa - 42 1 (nl-n2 ) (8.4)

The most important difference is that Ly a only depends on the transition dipole

matrix element ;21' whereas T(w) acquires a contribution from the permanent dipole

moments of the two levels (terms proportional to x(w)). Furthermore, T(w) is

proportional to S 2 (the strength of the interaction between the vibrating atom

and the crystal), whereas LyPa is independent of this parameter.

An absorption profiel for a two-state system is called a line shape, because

it singles out a specific transition of the vibrational bond. With the matrix

representations of the previous sections we are now able to construct the line

shape I(w) by simple matrix operations. First we define the dimensionless line

shape I(w) by
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I(W) - I(W)(I z ( c)'2zL 2 (9.1)

in order to suppress irrelevant overall factors. Then we write I() as a sum of

two contributions

I(M) - ( ) reg + l(W) in (9.2)

where I(w)reg comes from the term L..pa (regression part) and I(w)in represent the

initial-correlation contribution. It appears that I(M) can be expressed entirely

in the parameters

a- ESo 2  , (9.3)
V

m - ( )22I2 (9.4)

Here, a equals the half width at half maximum if the line would be approximated by

a Lorentzian, and in the case T - 0, wo - 4WDo and m measures the relative

importance of the permanent dipole moments in comparison with the transition

dipole moment. We finally obtain

l(W) - 2ww (nl-n Re (9.5)
rag o 1 2  D() coh

I(W) - 2ww Re( O(M - OM) (9.6)
in 0 D(w)coh ()pop

in terms of the auxiliary functions
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D(w) 2 2 +2iwq (w) (9.7)coh o

D( )O P - w(w+i(p(w)+q(w))) (9.8)

g (W o -g^ g * ( - ) g*Ao

) --2 i a ( o + 0 )
2ka2 w -w W+W

0 0

g(. ).g( )  g*- o)g*(-A)

+nl( 0 0 (9.9)
0 0

O(M) - a (n2(g(o)- g((o+ ) g* o) + g*(Wo- ))
2w 2 00 0 0

0

+ nl(g('A) g('A+A) _ g*('A ) + g*('_o "A ) (9.10)

(A)0 () +C W0 0 M(.0

with W^ - w/D the frequency in units of c The two D(w) functions are the

determinants of the two submatrices in Eq. (7.2), and the subscripts coh and pop

refer to the subspaces of coherences (12><i Il><21) and populations (12><21,

11><11), respectively. The above sequence of formulas determines the shape of a

single absorption line, where w o a, 7 and m are the only arbitrary parameters (if

we take woD as the frequency unit). For a specified potential V(z) we can express

W ,a and m in properties of this potential, and 7 is simply the temperature of the

crystal.

Substitution of D(w)coh into Eq. (9.5) and removal of the real part yields

4 (n1 -n2)o WRen(w)
l(W)reg 2 22+2i() 2 22

0
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From the definition (7.5) of "(w) and the property (3.10) of the reservoir

correlation function, it follows that Req(w) - 0 for w > w., and consequently

I(W)reg - 0 , for w > wD (9.12)

Therefore, absorption for w > wD can only be a result of nonvanishing initial

correlations.

X. APPROXIMATIONS

Before we discuss the relevance of the finite memory-time in the time

regression of dipole correlation functions and the importance of the inclusion of

initial correlations, we summarize the results from earlier theories. A most

obvious approximation would be the factorization

lim D(O,t) l [M,pa]Pp (10.1)
at- p

of the initial condition for the time-regression equation (5.5). It can be

shown 1 5 that this implies T(w) - 0, and consequently I().in - 0, so that I(w) is

approximated by l(w)reg.

A more rigorous simplification is the Markov approximation, in which any

memory effect is discarded. First this implies the factorization (10.1), where a

memory of p(t) to its recent past is neglected. Secondly, we adopt a memoryless

i description of the time regression, which yields a frequency-independent

relaxation operator r . The Markovian equivalent of the matrix (7.2) reads1 8
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w-L +ir -
a m

W+ip(O) -iq(O) 0 0

-ip(O) w+iq(O) 0 0

0 0 W-(. 0 +il7(Wo) -i 7 *(Wo) (10.2)

0 0 -iq(w0) W+o+i7*(w )

In the left-top submatrix, the parameter functions p(w) and q(W) are replaced by

their values at w - 0. Since the steady-state level populations n, and n2 are

determined by 1(0), we conclude that nI and n2 are unaffected by this

approximation. In the right-bottom submatrix the functions q(W) are now evaluated

at the resonance frequency w , rather than at the laser frequency w, and

furthermore, the functions q(wo) in the fourth column are now complex-conjugated.

In this approximation the line shape is found to be

4(n-n 2)W0 w
2Re( w0 )

-((W 0 2_ 2+2w im7(w0) 2 + 42 (Re(w 0))2 (10.3)

which greatly resembles I(w)reg from Eq. (9.11). The most important difference is

that we now find Req(w 0) in the numerator, rather than Ren(w), which implies that

l(w)m is finite for w > wD"

In the most simple theory of relaxation (which leads to a master equation for

the time evolution of the populations), we furthermore neglect any coupling

between coherences and populations, and between coherences which evolve with a

different frequency in a free evolution (no coupling to the reservoir). This

approximation is usually called the secular approximation, and it is equivalent
to the neglect of terms which oscillate fast on a time scale i/a (Eq. (9.3)).
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Then we replace the off-diagonal matrix elements -i"(wo ) and -iq*(w0 ) in Eq.

(10.2) by zero, which gives for the line shape (s - secular)

-(w -W (n -n ) Re i (10.4)0() 1 on-2) Re W 0_+in(wo0

We obtain the standard Lorentzian, which has its maximum at w - wo + Im"(Wo ), and

has a half-width at half-maximum equal to Req(w0 ).

It is easy to verify that the three approximations yield the same value for

I(M) at the resonance frequency wo e.g.,

(W()reg )m - l(w )s - Wo(n-n2Re ) (10.5)

Conversely, this implies that the successive refinements will have a major

significance in the line wings only, which is illustrated in Fig. 1.

XI. RESULTS

The line shape I(w) is composed of two contributions, which are drawn

,5 separately in Fig. 2 for a specific set of parameters. We notice that the initial

correlation part is not small, and that it takes on both positive and negative

values. A considerable increase of the absorption is found in the line center and

the red wing, whereas the blue wing is only slightly modified, both in comparison

with the line shape l(w)reg (the best approximation so far). Due to the neglect

of permanent dipole moments in this case (m - 0), we find a sharp edge at W - WD'

and a vanishing absorption for w > wD' Of course, multiphonon processes would

also give rise to absorption at w > wD' but these contributions are assumed to be

small. The cutoff can be understood from the fact that a photon absorption from

the laser gives rise to a transition Jl> 1 J2> of the adsorbate. Energy

6
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conservation then implies that this process must be followed by a single-phonon

emission into the crystal, under a decay 12> - 1i> of the adsorbate bond. In a

Debye model there are no phonon modes available for w > wDf and therefore this

process cannot occur.

A remarkable profile arises if we allow the atomic bond to have a permanent

dipole moment (m o 0), which is illustrated in Fig. 3. For w < wD the value of m

has hardly any significance, but above the cutoff frequency we now find a finite

absorption if m ri 0. We observe a peak at w - w+ wD, a smooth background for

W D < W < W + WD' How can this be understood? First we remember that a low-

intensity profile is a balance between the stimulated absorption and emission

rates for single-photon transitions. Hence the phenomenon cannot be attributed to

multiphoton processes. Then we recall that we restricted ourselves to a model of

single-phonon interactions, which rules out multiphonon processes. Third, a

positive I(w) corresponds to a photon absorption. A positive 1(w) in the range

co > W D > w can then only be found from the following energy-conserving process.

Initially the adsorbate is in its lower state Il>. Absorption of a photon then

excites the system to a virtual level with energy Yw above the energy of state

Ii>, and subsequently this state decays to 12>, accompanied by the emission of a

phonon with frequency w - wo. The second transition can only occur if w - 0 <

AWD' or w < w0 + w D. This explains why I(w) vanishes identically for w > wo + w D'

d, and can be finite for w < W < W + D
D o

XII. CONCLUSIONS

We performed very detailed calculations on the optical spectral profile and

line shapes of physisorbed atoms on the surface of a harmonic crystal. Coupling

of the atomic motion to the phonon field of the crystal provides the relaxation

mechanism for the evolution of the adsorbate vibrational states towards thermal

%
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equilibrium. Since the amplitude correlation function of a substrate atom has a

finite decay time, the time evolution of the reduced adsorbate density operator

exhibits a memory effect. The absorption profile is determined by dipole

correlation functions, depending on two times. We identified two different

aspects of the memory, which were called regression and initial correlation. A

general finite memory-time reservoir theory was applied for the evaluation of the

line shape.

It appeared that the properties of the reservoir could be accounted for by a

single dimensionless function g(z), which has only the dimensionless temperature I

as parameter (apart from a scaling factor s). The other parameters of the line

shape are the resonance frequency w of the uncoupled adsorbate, the interaction-

strength parameter a (frequency, related to line width), and the permanent-dipole

parameter m (dimensionless). From our analytical expression for the line shape we

showed that any absorption above the Debye frequency can only be a consequence of

nonvanishing initial correlations (in the single-phonon approximation). It was

exemplified (Fig. 3) that I(w) is finite indeed for w > wD, provided that the

transition has a permanent dipole moment (as is the case for a Morse potential).

I
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FIGURE CAPTIONS

Fig. 1. Secular (a), Markov (b) and regression (c) approximation of I(W) as a

function of W - w/CwD' and for w - 0.65 x wD (dotted line), a - 0.4 x wD, 7 - 10

(low temperature) and m - 0. Curve a is a Lorentzian around w + Imn(W0 ), but for

00ie, the present parameters the line shift is negligible (Imq(w) - 0.011). As

predicted in Eq. (10.5), the value of I(wo) is the same for the three curves. The

secular approximation gives a finite absorption for w 0 0, whereas the improved

results, curves b and c, give a vanishing absorption for c. - 0. n the blue wing,

however, curves a and b remain finite, but the most refined theory gives IC.) - 0

for w > w nD

Fi, 2. Curve a and b are I(w)g and I(w)in, respectively, for the same
reg in'

. parameters as in Fig. 1. Their sum, curve c, is I(w), which is calculated with

the present theory. Comparison of curves a and c shows the significance of the

-improvement. Note also the considerable red shift of the line with respect to th

resonance frequency w

Fig. 3. Curve a is the same as curve c from Fig. 2 (m - 0), and for curve b we

took the dipole-moment parameter m equal to 0.7. The nonzero value of m appears

* ' to have no importance at all for w < wD' but for w > wD only the profile b remain

finite. As pointed out in the text, the absorption for o > wD is entirely due to

the initial correlations.
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